A continuous function is one where there are no "breaks" or "jumps" in the graph.

Formally, a function is continuous at a point a if:

…the limit of as approaches a equals .

Continuity Differentiability

If a function is differentiable at a point, then it must be continuous at that point.
However, a function can be continuous at a point without being differentiable there.
E.g. is continuous everywhere but not differentiable at ; has a vertical tangent at , i.e. not differentiable there.

Link to original