Natural Evolution Strategies (NES)
Evolution strategies that use natural gradient descent to update search distribution parameters.
NES optimizes a probability distribution over parameters by maximizing expected fitness:Updates use the natural gradient where is the fisher information matrix.
This ensures the algorithm takes consistent steps in distribution space rather than parameter space - a small parameter change that drastically alters the distribution is scaled appropriately.
Continue after done with FIM
Mathy details: https://lilianweng.github.io/posts/2019-09-05-evolution-strategies/
But rather just read the damn paper itself?? https://www.jmlr.org/papers/volume15/wierstra14a/wierstra14a.pdf
https://chatgpt.com/c/68b9ecb8-4f8c-8328-8fe9-4bd7f31e555e + riemannian manifold, IGO
NES, FIM
https://blog.otoro.net/2017/10/29/visual-evolution-strategies/