Let λ=np … expected number of successes (mean of the distribution). If X∼ binomial(n,p) , then P(X=k)as n→∞:=(kn)pk(1−p)n−k=k!(n−k)!n!(nλ)k(1−nλ)n−k=k!λknkn(n−1)(n−2)⋯(n−k+1)(1−nλ)n(1−nλ)−k=k!λk\cancelto1nkn(n−1)(n−2)⋯(n−k+1)(1−nλ)n\cancelto1(1−nλ)−k=k!λke−λ